Трансмиссионные и гидравлические масла

Гидравлические масла

Общие требования и свойства

    Гидравлические масла (рабочие жидкости для гидравлических систем) разделяют на нефтяные, синтетические и водно-гликолевые. По назначению их делят в соответствии с областью применения:

    - для летательных аппаратов, мобильной наземной, речной и морской техники;

    - для гидротормозных и амортизаторных устройств различных машин;

    - для гидроприводов, гидропередач и циркуляционных масляных систем различных агрегатов, машин и механизмов, составляющих оборудование промышленных предприятий.

    В данной главе рассмотрены рабочие жидкости для гидросистем мобильной техники, обозначенные ГОСТ 17479.3-85 как гидравлические масла, а также некоторые наиболее распространенные гидротормозные и амортизаторные жидкости на нефтяной и синтетической основах.

    Основная функция рабочих жидкостей (жидких сред) для гидравлических систем - передача механической энергии от ее источника к месту использования с изменением значения или направления приложенной силы.

    Гидравлический привод не может действовать без жидкой рабочей среды, являющейся необходимым конструкционным элементом любой

    - гидравлической системы. В постоянном совершенствовании конструкций гидроприводов отмечаются следующие тенденции:

    - повышение рабочих давлений и связанное с этим расширение верхних температурных пределов эксплуатации рабочих жидкостей;

    - уменьшение общей массы привода или увеличение отношения передаваемой мощности к массе, что обусловливает более интенсивную эксплуатацию рабочей жидкости;

    - уменьшение рабочих зазоров между деталями рабочего органа (выходной и приемной полостей гидросистемы), что ужесточает требования к чистоте рабочей жидкости (или ее фильтруемости при наличии фильтров в гидросистемах).

    С целью удовлетворения требований, продиктованных указанными тенденциями развития гидроприводов, современные рабочие жидкости (гидравлические масла) для них должны обладать определенными характеристиками:

    - иметь оптимальный уровень вязкости и хорошие вязкостно-температурные свойства в широком диапазоне температур, т.е. высокий индекс вязкости;

    - отличаться высоким антиокислительным потенциалом, а также термической и химической стабильностью, обеспечивающими длительную бессменную работу жидкости в гидросистеме;

    - защищать детали гидропривода от коррозии;

    - обладать хорошей фильтруемостью;

    - иметь необходимые деаэрирующие, деэмульгирующие и антипенные свойства;

    - предохранять детали гидросистемы от износа;

    - быть совместимыми с материалами гидросистемы.

    Большинство массовых сортов гидравлических масел вырабатывают на основе хорошо очищенных базовых масел, получаемых из рядовых нефтяных фракций с использованием современных технологических процессов экстракционной и гидрокаталитической очистки.

    Физико-химические и эксплуатационные свойства современных гидравлических масел значительно улучшаются при введении в них функциональных присадок - антиокислительных, антикоррозионных, противоизносных, антипенных и др.

    Вязкостные и низкотемпературные свойства определяют температурный диапазон эксплуатации гидросистем и оказывают решающее влияние на выходные характеристики гидропривода. При выборе вязкости гидравлического масла важно знать тип насоса. Изготовители насоса, как правило, рекомендут для него пределы вязкости: максимальный, минимальный и оптимальный. Максимальная - это наибольшая вязкость, при которой насос в состоянии прокачивать масло. Она зависит от мощности насоса, диаметра и протяженности трубопровода. Минимальная - это та вязкость при рабочей температуре, при которой гидросистема работает достаточно надежно. Если вязкость уменьшается ниже допустимой, растут объемные потери (утечки) в насосе и клапанах, соответственно падает мощность и ухудшаются условия смазывания. Пониженная вязкость гидравлического масла вызывает наиболее интенсивное проявление усталостных видов изнашивания контактирующих деталей гидросистемы. Повышенная вязкость значительно увеличивает механические потери привода, затрудняет относительное перемещение деталей насоса и клапанов, делает невозможной работу гидросистем в условиях пониженных температур.

    Вязкость масла непосредственно связана с температурой кипения масляной фракции, ее средней молекулярной массой, с групповым химическим составом и строением углеводородов. Указанными факторами определяется абсолютная вязкость масла, а также его вязкостно-температурные свойства, т.е. изменение вязкости с изменением температуры. Последнее характеризуется индексом вязкости масла.

    Для улучшения вязкостно-температурных свойств применяют вязкостные (загущающие) присадки - полимерные соединения. В составе товарных гидравлических масел в качестве загущающих присадок используют полиметакрилаты, полиизобутилены и продукты полимеризации винил-бутилового эфира (винипол).

    Антиокислительная и химическая стабильности характеризуют стойкость масла к окислению в процессе эксплуатации под воздействием температуры, усиленного барботажа масла воздухом при работе насоса. Окисление масла приводит к изменению его вязкости (как правило, к повышению) и к накоплению в нем продуктов окисления, образующих осадки и лаковые отложения на поверхностях деталей гидросистемы, что затрудняет ее работу.

    Повышения антиокислительных свойств гидравлических масел достигают путем введения антиокислительных присадок обычно фенольного и аминного типов.

    В гидросистемах машин и механизмов присутствуют детали из разных металлов: разных марок стали, алюминия, бронзы, которые могут подвергаться коррозионно-химическому изнашиванию. Коррозия металлов может быть электрохимической, возникающей обычно в присутствии воды, и химической, протекающей под воздействием химически агрессивных сред (кислых соединений, образующихся в процессе окисления масла) и под воздействием химически-активных продуктов расщепления присадок при повышенных контактных температурах поверхностей трения. Устранению коррозии металлов способствуют вводимые в масло присадки - ингибиторы окисления. препятствующие образованию кислых соединений, и специальные антикоррозионные добавки.

    Стремление к улучшению противоизносных свойств гидравлических масел вызвано включением в новые конструкции гидравлических систем интенсифицированных гидравлических насосов. Наибольшее распространение в качестве присадок, обеспечивающих достаточный уровень противоизносных свойств гидравлических масел, наибольшее распространение получили диалкилдитиофосфаты металлов (в основном цинка) или беззольные (аминные соли и сложные эфиры дитиофосфорной кислоты).

    К гидравлическим маслам предъявляют достаточно жесткие требования по нейтральности их по отношению к длительно контактирующим с ними материалам. Учитывая, что рабочие температуры масла в современных гидропередачах достаточно высоки и резиновые уплотнения могут быстро разрушаться, в гидравлических маслах недопустимо высокое содержание ароматических углеводородов, проявляющих наибольшую агрессивность по отношению к резинам. Содержание ароматических углеводородов характеризуется показателем "анилиновая точка" базового масла.

    При работе циркулирующих гидравлических масел недопустимо пенообразование. Оно нарушает подачу масла к узлу трения и, насыщая масло воздухом, интенсифицирует его окисление, ухудшая отвод тепла от рабочих поверхностей, вызывает кавитационные повреждения деталей, перегрев гидропривода и его повышенный износ. Для обеспечения хороших антипенных свойств масла преимущественное значение имеет полнота удаления из базового масла поверхностно-активных смолистых веществ. Чтобы предотвратить образование пены или ускорить ее разрушение, в масло вводят антипенную присадку (например, полиметилсилоксан), которая снижает поверхностное натяжение на границе раздела жидкости и воздуха, что приводит к ускоренному разрушению пузырьков пены.

    В составе гидравлических масел крайне нежелательно наличие механических примесей и воды. Вследствие весьма малых зазоров рабочих пар гидросистем (особенно, оснащенных аксиально-поршневыми механизмами) наличие загрязнений может привести не только к износу элементов гидрооборудования, но и к заклиниванию деталей. Для очистки рабочей жидкости от загрязнений в гидросистемах применяют фильтры различных типов. Даже незначительное количество (0,05-0,1 %) воды отрицательно влияет на работу гидросистем. Вода, попадающая в гидросистему с маслом или в процессе эксплуатации, ускоряет процесс окисления масла, вызывает гидролиз гидролитически неустойчивых компонентов масла (в частности, присадок - солей металлов). Продукты гидролиза присадок вызывают электрохимическую коррозию металлов гидросистемы. Вода способствует образованию шлама неорганического и органического происхождения, который забивает фильтр и зазоры оборудования, тем самым нарушая работу гидросистемы.

    К некоторым маслам предъявляют специфические, дополнительные требования. Так, масла, загущенные полимерными присадками, должны обладать достаточно высокой стойкостью к механической и термической деструкции; для масел, эксплуатируемых в гидросистемах речной и морской техники, особенно важна влагостойкость присадок и малая эмульгируемооть.

    В некоторых специфических областях применения, таких, как горнодобывающая и сталелитейная промышленности, в отдельную группу выделились огнестойкие рабочие жидкости на водной основе (эмульсии "масло в воде", "вода в масле", водно-гликолевые смеси и др.) и жидкости, не содержащие воды (сложные эфиры фосфорной кислоты, олигоорганосилоксаны, фторированные углеводороды и др.).

Система обозначения гидравлических масел

    Принятая в мире классификация минеральных гидравлических масел основана на их вязкости и наличии присадок, обеспечивающих необходимый уровень эксплуатационных свойств.

    В соответствии с ГОСТ 17479.3-85 ("Масла гидравлические. Классификация и обозначение") обозначение отечественных гидравлических масел состоит из групп знаков, первая из которых обозначается буквами "МГ" (минеральное гидравлическое), вторая - цифрами и характеризует класс кинематической вязкости, третья - буквами и указывает на принадлежность масла к группе по эксплуатационным свойствам.

Классы вязкости гидравлических масел

Класс вязкости

Кинематическая вязкость при 40 °С, мм2/c

Класс вязкости

Кинематическая вязкость при 40 °С, мм2/c

5

4,14-5,06

32

28,80-35,20

7

6,12-7,48

46

41,40-50,60

10

9,00-11,00

68

61,20-74,80

15

13,50-16,50

100

90,00-110,00

22

19,80-24,20

150

135,00- 165,00

 

    По ГОСТ 17479.3-85 (аналогично международному стандарту ISO 3448) гидравлические масла по значению вязкости при 40 °С делятся на 10 классов (табл. 4.11).

    В зависимости от эксплуатационных свойств и состава (наличия соответствующих функциональных присадок) гидравлические масла делят на группы А, Б и В.

    Группа А (группа НН по ISO) - нефтяные масла без присадок, применяемые в малонагруженных гидросистемах с шестеренными или поршневыми насосами, работающими при давлении до 15 МПа и максимальной температуре масла в объеме до 80 °С.

    Группа Б (группа HL по ISO) - масла с антиокислительными и антикоррозионными присадками. Предназначены для средненапряженных гидросистем с различными насосами, работающими при давлениях до 2,5 МПа и температуре масла в объеме свыше 80 °С.

    Группа В (группа HM по ISO) - хорошо очищенные масла с антиокислительными, антикоррозионными и противоизносными присадками. Предназначены для гидросистем, работающих при давлении свыше 25 МПа и температуре масла в объеме свыше 90 °С.

    В масла всех указанных групп могут быть введены загущающие (вязкостные) и антипенные присадки.

    Загущенные вязкостными полимерными присадками гидравлические масла соответствуют группе HV по ISO 6743/4.

    В таблице приведено обозначение гидравлических масел существующего ассортимента в соответстствии с классификацией по ГОСТ 17479.3-85.

Обозначение товарных гидравлических масел

Обозначение масла по ГОСТ 17479.3-85

Товарная марка

Обозначение масла по ГОСТ 17479.3-85

Товарная марка

МГ-5-Б

МГЕ-4А, ЛЗ-МГ-2

МГ-22-В

"Р"

МГ-7-Б

МГ-7-Б, РМ

МГ-32-А

"ЭШ"

МГ-10-Б

МГ-10-Б, РМЦ

МГ-32-В

"А", МГТ

МГ-15-Б

АМГ-10

МГ-46-В

МГЕ-46В

МГ-15-В

МГЕ-10А, ВМГЗ

МГ-68-В

МГ-8А-(М8-А)

МГ-22-А

АУ

МГ-100-Б

ГЖД-14С

МГ-22-Б

АУП

 

 

 

    В таблице кроме чисто гидравлических масел включены масла марок "А", "Р", МГТ, отнесенные к категории трансмиссионных масел для гидромеханических передач. Однако благодаря высокому индексу вязкости, хорошим низкотемпературным и эксплуатационным свойствам и из-за отсутствия гидравлических масел такого уровня вязкости они также используются в гидрообъемных передачах и гидросистемах навесного оборудования наземной техники.

    Некоторые давно разработанные и выпускаемые гидравлические масла по значению вязкости нестрого соответствуют классу по классификации, обозначенной ГОСТ 17479.3-85, а занимают промежуточное положение. Например, масло ГТ-50, имеющее вязкость при 40 °С 17-18 ммУс, находится в ряду классификации между 15 и 22 классами вязкости.

    По вязкостным свойствам гидравлические масла условно делятся на следующие:

    - маловязкие - классы вязкости с 5 по 15;

    - средневязкие - классы вязкости 22 и 32;

    - вязкие - классы вязкости с 46 по 150.



 

Трансмиссионные и гидравлические масла  »
Библиотека »